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ABSTRACT
A combustor liner was computationally simulated and

probabilistically evaluated in view of the several uncertainties in
the aerodynamic, structural, material and thermal variables that
govern the combustor liner. The interconnection between the
computational fluid dynamics code and the finite element
structural analysis codes was necessary to couple the thermal
profiles with structural design. The stresses and their variations
were evaluated at critical points on the liner. Cumulative
distribution functions and sensitivity factors were computed for
stress responses due to the aerodynamic, mechanical and
thermal random variables. It was observed that the inlet and
exit temperatures have a lot of influence on the hoop stress. For
prescribed values of inlet and exit temperatures, the Reynolds
number of the flow, coefficient of thermal expansion, gas
emissivity and absorptivity and thermal conductivity of the
material have about the same impact on the hoop stress. These
results can be used to quickly identify the most critical design
variables in order to optimize the design and make it cost
effective.

INTRODUCTION
Predictive technologies based on a probabilistic method of

problem solving are gaining a steady foothold as a method of
finding answers to engineering problems. These can be used for
design, sensitivity analysis, mathematical modeling of complex
processes, uncertainty analysis, competitive analysis and
process optimization. With the increase in gas turbine engine
structural complexity and performance over the past 50 years,
structural engineers have created an array of safety nets to ensure
against component failures in turbine engines. In order to reduce
what is now considered to be excessive conservatism and yet
maintain the same adequate margins of safety, there is a
pressing need to explore methods of incorporating probabilistic
design procedures into engine development. Probabilistic
methods combine and prioritize the statistical distributions of
each design variable, generate an interactive distribution and
offer the designer a quantified relationship between robustness,

endurance and performance. The designer can therefore iterate
between weight reduction, life increase, engine size reduction,
speed increase, etc.

Fox [1] developed a design system that integrated the
deterministic design methods with probabilistic design
techniques. Here, two different approaches were used for
estimating uncertainty. A Monte Carlo approach was used on
design codes that were judged to run relatively quickly. For
more computationally intensive design codes, a second order
response surface model in conjunction with Box-Behnken
design experiments was used and then a Monte Carlo
simulation was executed. Lykins and Thompson [2] and
Thompson and Fecke [3] developed a system for probabilistic
design of gas turbine engines. They relied on direct numerical
integration using closed form solutions by fast probability
integration to establish risk estimates.

Several researchers at NASA Glenn Research Center have
applied the probabilistic design approaches to turbine engines
and related systems. Chamis [4] developed a Probabilistic
Structural Analysis Method (PSAM) using different
distributions such as the Weibull, normal, log-normal etc. to
describe the uncertainties in the structural and load parameters
or primitive variables. Nagpal, Rubinstein, and Chamis [5]
presented a probabilistic study of turbopump blades of the
Space Shuttle Main Engine (SSME). They found that random
variations or uncertainties in geometry have statistically
significant influence on the response variable and random
variations in material properties have statistically insignificant
effects. Chamis [6] summarized the usefulness and importance of
the probabilistic approach, especially for turbopumps. Pai and
Chamis [7] outlined the probabilistic evaluation of the buckling
of truss structures for non-uniform thermal loads, other loads
and moments using the NESSUS computer code. Their results
indicated that the buckling loads and member axial forces are
most sensitive to the uncertainties in geometry variables. The
structural and thermal aspects of the probabilistic assessment of
a combustor liner design were reported by Pai and Chamis [8].
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Probabilistic CFD design is needed because the flow effects
on structures will have to be described more accurately. To cost
effectively accomplish the design task, we need to formally
quantify the effect of uncertainties (variables) in the design.
Probabilistic design is one effective method to formally quantify
the effect of uncertainties. It is essential to strengthen the
structural probabilistic analysis capability to include
aerodynamic and heat transfer uncertainties. The objective is to
establish a revolutionary new early design process, by
developing non-deterministic physics-based probabilistic design
tools, which will include all the life cycle processes.
Breakthroughs will be sought in speed, accuracy, intelligence,
and usability of the system.

A new three-dimensional approach was developed to
investigate the application of a parametric optimization method
coupled with a CFD Navier-Stokes analysis code, NPARC [9]
for the aerothermal design of a combustor liner. The general
benefits of the proposed computational research will be
improvements to both accuracy and efficiency of the present
analysis techniques and will provide savings in computational
simulation efforts as well as greater understanding of flow
physics issues associated with turbomachinery design.

GOVERNING EQUATIONS AND COMPUTATIONAL
FLUID DYNAMICS METHOD

The governing equations are the three-dimensional,
unsteady, compressible Navier-Stokes equations coupled with
the k-ω SST turbulence model and may be written as:
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where E represents the total energy and τ̂ ij  are composed of
molecular and Reynolds stresses, defined as
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The turbulent eddy viscosity is defined as

µ ρ ωT k F= ( )0 31 0 31 2. / max . ;Ω (4)

where F1 and F2 are turbulence functions and Ω  is the absolute
value of vorticity. The idea is to retain the robust and accurate
formulation of the Wilcox [11] k-ω model in the near wall
region and to take advantage of the free stream independence of
the k-ε model in the outer part of the boundary layer. To
achieve this, the k-ε model is transformed into a k-ω
formulation. The original model is then multiplied by a
function F1 and the transformed model by a function (1-F1) and
both are added together. The function F1 will be designed to be
one in the near wall region and zero away from the surface. The
blending will take place in the wake region of the boundary
layer. Similarly, F2 is used as a blending function for the eddy
viscosity model. More details about the turbulence models can
be found in Ref. [10]. The equation of state is introduced to
complete the set of the governing equations as

p E u u ki i= − − −
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The governing equations are transformed in generalized
coordinates and are solved with a finite volume method. With a
backward Euler implicit method, the governing equations are
discretized in time and linearized in delta form as
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where J is the Jacobian of transformation, R is the residual of
the steady-state flow equations, and Q is the six-element vector
of conservative variables ( , , , , , ) .ρ ρ ρ ρ ρ ρu v e k w T

For the calculation of the residual, convective terms are
upwind differenced based on Roe’s flux difference splitting
(FDS) scheme [12], and viscous terms are central differenced.
The third order of spatial accuracy is kept in all calculations.

The flow simulations were performed by obtaining a
converged steady state flow solution. The steady state
simulation to initialize the flow field was done with the
approximate factorization algorithm using local time stepping.
Typically, about 2500 time steps were required to reduce the L2

norm to about 10–7. For the time accurate computations, a five
step Jameson algorithm second order accurate in time was
selected. The time step throughout the grid block was set to a
constant equal to the Courant-Friedrichs-Lewy (CFL) limit
specified by the global time step (DTCAP) at the location of
maximum change in the flow variables. This option provides
the most rapid time-accurate simulation.
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GRID GEOMETRY DESCRIPTION
Figure 1 shows a single grid block used for computations.

The flow incidence angle was specified and the backpressure is
adjusted until the average Mach number along the inflow
boundary matches a specified value. Computational grids were
generated using the GRIDGEN3D [13] grid generation program.
Uniform grid spacing was used in each coordinate direction. A
grid refinement study was completed to ensure that the
computed results were independent of the grid density. The
combustor liner was axisymmetric. A grid of 97 x 101 was
selected for the combustor liner aerodynamic simulations.

THE PROBABILISTIC STRUCTURAL ANALYSIS CODE,
NESTEM

NESTEM [14] is an enhanced version of NESSUS
(Numerical Evaluation of Stochastic Structures Under Stress)
developed by NASA Glenn Research Center. NESTEM
maintains all the capabilities of NESSUS, including structural
analysis using a finite element approach and adds three
significant features, namely, heat transfer analysis, geometry
generation and ceramic material property generation. The code
combines state of the art probabilistic algorithms with general-
purpose structural analysis methods to compute the
probabilistic response and the reliability of engineering
structures. Uncertainty in loading, material properties,
geometry, boundary conditions and initial conditions can be
simulated. The structural analysis methods include nonlinear
finite element methods and boundary element methods. Several
probabilistic algorithms are available such as the advanced
mean value method and the adaptive importance sampling
method. The application of the code includes probabilistic
structural response, component and system reliability and risk
analysis of structures considering cost of failure. The basic heat
transfer variables can be included as random variables along
with the mechanical random variables to quantify risk using
probabilistic methods to perform sensitivity analysis.

In general, the finite element equations of motion may be
written as:

[M] { ˙̇u } + [C] { u̇ } + [K] {u} = F(t) (7)

Here, [M], [C] and [K] denote the mass, damping and stiffness
matrices respectively. Further more, { ˙̇u }, { u̇ } and {u} are the
acceleration, velocity and displacement vectors at each node,
respectively. The forcing function F(t) is time independent at
each node.

In this paper, the static case is considered by setting the
mass and damping matrices to zero and considering the forcing
function to be independent of time in Eq. (7) such that

[K] {u} = F (8)

COMPUTATIONAL APPROACH BY THE COUPLING
OF CFD AND NESTEM CODES

A thorough literature search has revealed that so far, no one
has reported in the literature on the probabilistic study based
upon the coupling of the computational fluid dynamics and
structural finite element analysis. Therefore, the present study

was undertaken in order to accomplish this task. The
NPARC [9] program performs aerodynamic analyses for all
mean and perturbed values of the random aerodynamic
variables. The environmental temperature distribution along the
length of the combustor liner was computed in each case.
A typical plot of the environmental temperature is provided in
Figure 2. The NESTEM program performs heat transfer
analyses for all mean and perturbed heat transfer and mechanical
random variables using the environmental temperature data.
Once all the response analyses are completed, the program uses
that data for a probabilistic analysis using the fast probability
integration (FPI) module. This module determines the
probabilistic distribution and sensitivity factors for the
respective random variables.

The proposed methodology will be demonstrated by
applying it to a combustor liner assuming uncertainties in the
random variables. The liner is made of Haynes alloy,
9.5 inches long, 50 inches inner diameter and 0.1 inch thick.
A finite element model was created using 1400 eight node brick
elements and 2400 nodes. There were two elements through the
thickness and 100 elements around the circumference. All nodes
on the left end of the liner were held against axial translation.
On this end, nodes on the inside surface and located at ninety
degrees from each other were held tangentially. Thus, the liner
was free to expand in both radial and axial directions.

The aerodynamic, mechanical and thermal random
variables and their respective values used in this analysis are
shown in Table 1. All the random variables were assumed to be
independent. A scatter of ± 20% was specified for all the
variables. This variation amounted to two standard deviations.
Although the variations chosen may not be realistic, they can
be used to illustrate the procedure used and validate the
approach. Normal distribution was assumed for all random
variable scatters. Figure 3 shows the various steps in the
probabilistic CFD and structural analysis.

DISCUSSION OF RESULTS
Maximum hoop stress location was determined from a pre-

analysis of the combustor liner. This location was used to
evaluate the cumulative distribution functions (CDF) and the
sensitivity factors for stress response. CDF for the hoop stress is
shown in Figure 4. The sensitivity factors for hoop stress
versus the random variables are plotted in Figures 5 to 9.
Table 2 shows the details of the random variables. From
Figures 5 to 9 we observe that the inlet and exit temperatures
have a lot of influence on the hoop stress. For prescribed values
of inlet and exit temperatures, the Reynolds number of the flow,
coefficient of thermal expansion, gas emissivity and absorptivity
and thermal conductivity of the material have a lot of impact on
the hoop stress. These results can be used to further optimize
the design for cost effectiveness.

CONCLUDING REMARKS
In this paper, a non-deterministic, non-traditional method

has been developed to support reliability-based aerospace
design. The revolutionary part of the proposed work is the
probabilistic evaluation of the Computational Fluid Dynamics
(CFD) methodology. The nontraditional part of the proposed
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work is the identification of criteria for using different materials
and computational accuracy. Probabilistic methods were applied
to the aerothermodynamics of a combustor liner by developing
novel concepts for lowering the computational cost. The
interconnection between the CFD code and NESTEM codes
was necessary to couple the thermal profiles with structural
design. Stresses and their variations were evaluated at critical
points on the liner using the random variables including the
aerodynamic variables, material properties, pressure loading and
basic heat transfer variables. Cumulative distribution functions
and sensitivity factors were computed for stress responses due to
the aerodynamic, mechanical and thermal random variables.
Results show that the hoop stress will be less than 50 MPa
(7500 Psi) with about 1% probability and will be greater than
200 MPa (30,000 Psi) with a probability of 99%. The
deterministic value of hoop stress is given by
113 MPa (17,000 Psi). The inlet and exit temperatures
primarily affect the results. Evaluating probability of risk and
sensitivity factors will enable the identification of the most
critical design variables in order to optimize the design and
make it cost effective.
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Table 1.—Random variables
Random Variable Mean Value

Mach number 0.3

Reynolds number 1.6591036E07

Turbulence intensity 0.05

Inlet Total Pressure 150 Psi

Inlet Total Temperature 3460 R

Exit Temperature 3460 R

Angle of attack 5 degrees

Coefficient of thermal expansion 9.5 E –06 per ºF

Modulus of Elasticity 23 E +06 Psi

Poisson’s ratio 0.3

Emissivity of surface 0.8

Gas Emissivity inside 0.71

Gas absorptivity inside 0.52

Conductivity axial 16.67 BTU/hr ft ºF

Conductivity tangential 16.67 BTU/hr ft ºF

Conductivity through thickness 16.67 BTU/hr ft ºF

Table 2.—Random variable labels
Label Description

ANGLE Angle of attack for flow

CKXX Thermal conductivity in axial direction

CKYY Thermal conductivity in tangential direction

CKZZ Thermal conductivity in thickness direction

COEFF Coefficient of thermal expansion

EMIS12 Surface emissivity

GABS12 Gas absorptivity

GEMIS12 Gas emissivity

MACHNO Mach number

MODULUS Modulus of elasticity

POISSON Poisson’s ratio

PRESSIN Inlet pressure

REYNOLD Reynolds number

TEMPEX Exit temperature

TEMPIN Inlet temperature

TURBINT Turbulent intensity
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Figure 1.—Grid for combustor liner.
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Figure 6.—Sensitivity factors versus random variables.

Sensitivity factors (probability = 0.1) 
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Figure 7.—Sensitivity factors versus random variables.

Sensitivity factors (probability = 0.4) 
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Figure 8.—Sensitivity factors versus random variables.

Sensitivity factors (probability = 0.9) 
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Figure 9.—Sensitivity factors versus random variables.

Sensitivity factors (probability = 0.999) 
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